Skip to contents

The caugi package provides a flexible plotting system built on grid graphics for visualizing causal graphs. This vignette demonstrates how to create plots with different layout algorithms and customize their appearance.

Basic Plotting

The simplest way to visualize a caugi graph is with the plot() function:

# Create a simple DAG
cg <- caugi(
  A %-->% B + C,
  B %-->% D,
  C %-->% D,
  class = "DAG"
)

# Plot with default settings
plot(cg)

By default, plot() automatically selects the best layout algorithm based on your graph type. For graphs with only directed edges, it uses the Sugiyama hierarchical layout. For graphs with other edge types, it uses the Fruchterman-Reingold force-directed layout.

Layout Algorithms

The caugi package provides four layout algorithms, each optimized for different use cases.

Sugiyama (Hierarchical Layout)

The Sugiyama layout (Sugiyama, Tagawa, and Toda 1981) is ideal for directed acyclic graphs (DAGs). It arranges nodes in layers to emphasize hierarchical structure and causal flow from top to bottom, minimizing edge crossings.

# Create a more complex DAG
dag <- caugi(
  X1 %-->% M1 + M2,
  X2 %-->% M2 + M3,
  M1 %-->% Y,
  M2 %-->% Y,
  M3 %-->% Y,
  class = "DAG"
)

# Use Sugiyama layout explicitly
plot(dag, layout = "sugiyama", main = "Sugiyama")

Best for: DAGs, causal models, hierarchical structures

Limitations: Only works with directed edges

Fruchterman-Reingold (Spring-Electrical)

The Fruchterman-Reingold layout (Fruchterman and Reingold 1991) uses a physical simulation where edges act as springs and nodes repel each other like charged particles. It produces organic, symmetric layouts with relatively uniform edge lengths.

# Create a graph with bidirected edges (ADMG)
admg <- caugi(
  A %-->% C,
  B %-->% C,
  A %<->% B, # Bidirected edge (latent confounder)
  class = "ADMG"
)

# Fruchterman-Reingold handles all edge types
plot(admg, layout = "fruchterman-reingold", main = "Fruchterman-Reingold")

Best for: General-purpose visualization, graphs with mixed edge types

Advantages: Fast, works with all edge types, produces balanced layouts

Kamada-Kawai (Stress Minimization)

The Kamada-Kawai layout (Kamada and Kawai 1989) minimizes “stress” by making Euclidean distances in the plot proportional to graph-theoretic distances. This produces high-quality layouts that better preserve the global structure compared to Fruchterman-Reingold.

# Create an undirected graph
ug <- caugi(
  A %---% B,
  B %---% C + D,
  C %---% D,
  class = "UG"
)

plot(ug, layout = "kamada-kawai", main = "Kamada-Kawai")

Best for: Publication-quality figures, when accurate distance representation matters

Advantages: Better global structure preservation

Bipartite Layout

The bipartite layout is designed for graphs with a clear two-group structure, such as treatment/outcome or exposure/response relationships. It arranges nodes in two parallel lines (rows or columns).

Here’s an example bipartite causal graph with treatments and outcomes:

bipartite_graph <- caugi(
  Treatment_A %-->% Outcome_1 + Outcome_2 + Outcome_3,
  Treatment_B %-->% Outcome_1 + Outcome_2,
  Treatment_C %-->% Outcome_2 + Outcome_3,
  class = "DAG"
)

Horizontal rows (treatments on top, outcomes on bottom)

plot(
  bipartite_graph,
  layout = "bipartite",
  orientation = "rows"
)

Vertical columns (treatments on left, outcomes on right)

plot(
  bipartite_graph,
  layout = "bipartite",
  orientation = "columns"
)

The bipartite layout automatically detects which nodes should be in which partition based on incoming edges. Nodes with no incoming edges are placed in one group, while nodes with incoming edges are placed in the other. You can also specify the partition explicitly:

partition <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE)
plot(
  bipartite_graph,
  layout = caugi_layout_bipartite,
  partition = partition,
  orientation = "rows"
)

Best for: Treatment-outcome structures, exposure-response models, bipartite causal relationships

Advantages: Clear visual separation, emphasizes directed relationships between groups

Tiered Layouts

For graphs with more than two hierarchical levels, the tiered layout places nodes in multiple parallel tiers. This is ideal for visualizing causal structures with clear stages, such as exposures → mediators → outcomes.

First, create a simple three-tier causal graph:

cg_tiered <- caugi(
  X1 %-->% M1 + M2,
  X2 %-->% M1 + M2,
  M1 %-->% Y,
  M2 %-->% Y
)

We can define tiers using a named list:

tiers <- list(
  exposures = c("X1", "X2"),
  mediators = c("M1", "M2"),
  outcome = "Y"
)

plot(cg_tiered, layout = "tiered", tiers = tiers, orientation = "rows")

The tiered layout supports three input formats:

  • named lists,
  • named numeric vectors, and
  • data.frames.

Named lists is the most intuitive format, and what we have already shown. But you can also use a named numeric vector:

tiers_vector <- c(X1 = 1, X2 = 1, M1 = 2, M2 = 2, Y = 3)
plot(cg_tiered, layout = "tiered", tiers = tiers_vector, orientation = "columns")

Finally, you can use a data.frame to specify tiers directly.

tiers_df <- data.frame(
  name = c("X1", "X2", "M1", "M2", "Y"),
  tier = c(1, 1, 2, 2, 3)
)

layout_df <- caugi_layout_tiered(cg_tiered, tiers_df, orientation = "rows")

plot(cg_tiered, layout = layout_df)

Best for: Multi-stage causal processes, mediation analysis, temporal sequences, hierarchical structures

Advantages: Clear stage separation, flexible tier assignment, supports 2+ tiers, multiple input formats

Comparing Layouts

You can compute and examine layout coordinates directly using caugi_layout():

layout_sug <- caugi_layout(dag, method = "sugiyama")
layout_fr <- caugi_layout(dag, method = "fruchterman-reingold")
layout_kk <- caugi_layout(dag, method = "kamada-kawai")

# Examine coordinates
head(layout_sug)
#>   name    x   y
#> 1   X1 0.25 0.0
#> 2   X2 0.75 0.0
#> 3   M1 0.00 0.5
#> 4   M2 0.50 0.5
#> 5   M3 1.00 0.5
#> 6    Y 0.50 1.0

Customizing Plots

The plot() function provides extensive customization options for nodes, edges, and labels.

Node Styling

You can customize the appearance of nodes using the node_style parameter. Styles may be applied globally (to all nodes) or locally (to specific nodes).

Apply the same style to all nodes:

plot(
  cg,
  node_style = list(
    fill = "lightblue", # Fill color
    col = "darkblue", # Border color
    lwd = 2, # Border width
    padding = 4, # Text padding (mm)
    size = 1.2 # Size multiplier
  )
)

Customize styles for individual nodes using the by_node option:

plot(
  cg,
  node_style = list(
    by_node = list(
      A = list(fill = "red", col = "blue", lwd = 2),
      B = list(padding = "2")
    )
  )
)

Available node style parameters:

  • Appearance (passed to gpar()): fill, col, lwd, lty, alpha
  • Geometry: padding (text padding in mm), size (node size multiplier)

Edge Styling

You can customize edge appearance using the edge_style parameter. Styles can be applied globally, by edge type, by source node, or to individual edges.

Apply the same styling to all edges in the graph:

plot(
  dag,
  edge_style = list(
    col = "darkgray", # Edge color
    lwd = 1.5, # Edge width
    arrow_size = 4 # Arrow size (mm)
  )
)

Customize different edge types (e.g., directed vs. bidirected edges):

plot(
  admg,
  layout = "fruchterman-reingold",
  edge_style = list(
    directed = list(col = "blue", lwd = 2),
    bidirected = list(col = "red", lwd = 2, lty = "dashed")
  )
)

Apply styling to all edges from a given node:

plot(
  admg,
  layout = "fruchterman-reingold",
  edge_style = list(
    by_edge = list(
      A = list(col = "green", lwd = 2)
    )
  )
)

Target an individual edge between two nodes:

plot(
  admg,
  layout = "fruchterman-reingold",
  edge_style = list(
    by_edge = list(
      A = list(
        B = list(col = "orange", lwd = 3)
      )
    )
  )
)

The style precedence is as follows (highest to lowest):

  1. Specific edge (by_edge with both from and to nodes)
  2. All edges from a node (by_edge with only from node)
  3. Per-type edge styles (directed, undirected, etc.)
  4. Global edge styles

The example below combines global, per-type, per-node, and per-edge styling in a single plot. More specific styles override more general ones according to the precedence rules above.

plot(
  admg,
  layout = "fruchterman-reingold",
  edge_style = list(
    # Global defaults
    col = "gray80",
    lwd = 1,

    # Per-type styling
    directed = list(col = "blue"),
    bidirected = list(col = "red", lty = "dashed"),

    # All edges from node A
    by_edge = list(
      A = list(
        col = "green",
        lwd = 2,

        # Specific edge A -> B
        B = list(
          col = "orange",
          lwd = 3
        )
      )
    )
  )
)

Available edge style parameters:

  • Appearance (passed to gpar()): col, lwd, lty, alpha, fill
  • Geometry: arrow_size (arrow length in mm), circle_size (radius of endpoint circles for partial edges in mm)
  • Per-type options: directed, undirected, bidirected, partial

Partial Edges

Partial edges (o-> and o-o) are rendered with circles at their endpoints to indicate uncertainty about edge orientation. These edges appear in PAGs (Partial Ancestral Graphs). You can customize the circle size:

g <- caugi(
  A %o->% B,
  B %-->% C,
  C %o-o% D,
  class = "UNKNOWN"
)

plot(
  g,
  edge_style = list(
    partial = list(
      col = "purple",
      lwd = 2,
      circle_size = 2.5 # Larger circles (default is 1.5)
    )
  )
)

Label Styling

Customize node labels with the label_style parameter:

plot(
  cg,
  main = "Customized Labels",
  label_style = list(
    col = "white", # Text color
    fontsize = 12, # Font size
    fontface = "bold", # Font face
    fontfamily = "sans" # Font family
  ),
  node_style = list(
    fill = "navy" # Dark background for white text
  )
)

Available label style parameters (passed to gpar()):

  • col, fontsize, fontface, fontfamily, cex

Styling Tiered Layouts

By default, tiered layouts are plotted with boxes around each tier and labels indicating the tier names (if provided).

plot(cg_tiered, tiers = tiers)

But you can customize the appearance of tier boxes using the tier_style parameter. Here, for isntance, we specify different fill colors for each tier using a vector.

plot(
  cg_tiered,
  tiers = tiers,
  tier_style = list(
    fill = c("lightblue", "lightgreen", "lightyellow"),
    col = "gray50",
    lty = 2,
    alpha = 0.3
  )
)

For more granular control, you can specify styles for individual tiers. Here, we customize the “exposures” and “outcome” tiers specifically:

plot(
  cg_tiered,
  tiers = tiers,
  tier_style = list(
    fill = "gray95",
    col = "gray60",
    alpha = 0.2,
    by_tier = list(
      exposures = list(
        fill = "lightblue",
        col = "blue",
        lwd = 2
      ),
      outcome = list(
        fill = "lightyellow",
        col = "orange",
        lwd = 3,
        lty = 1
      )
    )
  )
)

Labels for the tiers can also be customized. Here, for example, we change the font size and color of the tier labels:

plot(
  cg_tiered,
  tiers = tiers, # Named list: exposures, mediators, outcome
  tier_style = list(
    fill = c("lightblue", "lightgreen", "lightyellow"),
    label_style = list(
      fontsize = 11,
      fontface = "bold",
      col = "gray20"
    )
  )
)

You can also provide custom labels for each tier instead of using the names from the tiers object

plot(
  cg_tiered,
  tiers = tiers,
  tier_style = list(
    fill = "gray95",
    labels = c("Exposure Variables", "Mediating Variables", "Outcome Variable")
  )
)

If you don’t want any boxes or labels around the tiers, you can disable them:

plot(
  cg_tiered,
  tiers = tiers,
  tier_style = list(boxes = FALSE, labels = FALSE)
)

Working with Different Graph Types

The plotting system works with all graph types supported by caugi.

Partially Directed Acyclic Graphs (PDAGs)

First, let’s create a PDAG with both directed and undirected edges:

pdag <- caugi(
  A %-->% B,
  B %---% C, # Undirected edge
  C %-->% D,
  class = "PDAG"
)

plot(
  pdag,
  edge_style = list(
    directed = list(col = "blue"),
    undirected = list(col = "gray", lwd = 2)
  )
)

Acyclic Directed Mixed Graphs (ADMGs)

Here’s an example of an ADMG with directed and bidirected edges:

complex_admg <- caugi(
  X %-->% M1 + M2,
  M1 %-->% Y,
  M2 %-->% Y,
  M1 %<->% M2, # Latent confounder between mediators
  class = "ADMG"
)

plot(
  complex_admg,
  layout = "kamada-kawai",
  node_style = list(fill = "lavender"),
  edge_style = list(
    directed = list(col = "black", lwd = 1.5),
    bidirected = list(col = "red", lwd = 1.5, lty = "dashed", arrow_size = 3)
  )
)

Undirected Graphs (UGs)

We also support undirected graphs. Here’s a Markov random field example:

markov <- caugi(
  A %---% B + C,
  B %---% D,
  C %---% D + E,
  D %---% E,
  class = "UG"
)

plot(
  markov,
  layout = "fruchterman-reingold",
  node_style = list(
    fill = "lightyellow",
    col = "orange",
    lwd = 2
  ),
  edge_style = list(col = "orange")
)

Plot Composition

The caugi package provides intuitive operators for composing multiple plots into complex layouts, similar to the patchwork package.

Basic Composition

Use + or | for horizontal arrangement and / for vertical stacking:

# Create two different graphs
g1 <- caugi(
  A %-->% B,
  B %-->% C,
  class = "DAG"
)

g2 <- caugi(
  X %-->% Y,
  Y %-->% Z,
  X %-->% Z,
  class = "DAG"
)

# Create plots
p1 <- plot(g1, main = "Graph 1")
p2 <- plot(g2, main = "Graph 2")

# Horizontal composition (side-by-side)
p1 + p2

The | operator is an alias for +:

# Equivalent to p1 + p2
p1 | p2

For vertical stacking, use the / operator:

p1 / p2

Nested Compositions

Compositions can be nested to create complex multi-plot layouts:

g3 <- caugi(
  M1 %-->% M2,
  M2 %-->% M3,
  class = "DAG"
)

p3 <- plot(g3, main = "Graph 3")

# Complex layout: two plots on top, one below
(p1 + p2) / p3

You can mix operators freely. Here’s an example combining horizontal and vertical arrangements:

(p1 + p2) / (p3 + p1)

Configuring Spacing

The spacing between composed plots is controlled globally via caugi_options():

caugi_options(plot = list(spacing = grid::unit(2, "lines")))

p1 + p2

To reset the default, you can call caugi_default_options():

Global Plot Options

The caugi_options() function allows you to set global defaults for plot appearance, which can be overridden on a per-plot basis.

Setting Default Styles

# Configure global defaults
caugi_options(plot = list(
  node_style = list(fill = "lightblue", padding = 3),
  edge_style = list(arrow_size = 4, fill = "darkgray"),
  title_style = list(col = "blue", fontsize = 16)
))

# This plot uses the global defaults
plot(cg, main = "Using Global Defaults")

Per-Plot Overrides

Global options serve as defaults that can be overridden:

# Set global node color
caugi_options(plot = list(
  node_style = list(fill = "lightblue")
))

# Override for this specific plot
plot(cg,
  main = "Custom Colors",
  node_style = list(fill = "pink")
)


# Reset to defauls
caugi_options(caugi_default_options())

Available Options

The following options can be configured under plot:

  • spacing: A grid::unit() controlling space between composed plots
  • node_style: List with fill, padding, and size
  • edge_style: List with arrow_size and fill
  • label_style: List of text parameters (see grid::gpar())
  • title_style: List with col, fontface, and fontsize
# View all current options
caugi_options()
#> $plot
#> $plot$spacing
#> [1] 1lines
#> 
#> $plot$node_style
#> $plot$node_style$fill
#> [1] "lightgrey"
#> 
#> $plot$node_style$padding
#> [1] 2
#> 
#> $plot$node_style$size
#> [1] 1
#> 
#> 
#> $plot$edge_style
#> $plot$edge_style$arrow_size
#> [1] 3
#> 
#> $plot$edge_style$circle_size
#> [1] 1.5
#> 
#> $plot$edge_style$fill
#> [1] "black"
#> 
#> 
#> $plot$label_style
#> list()
#> 
#> $plot$title_style
#> $plot$title_style$col
#> [1] "black"
#> 
#> $plot$title_style$fontface
#> [1] "bold"
#> 
#> $plot$title_style$fontsize
#> [1] 14.4
#> 
#> 
#> $plot$tier_style
#> $plot$tier_style$boxes
#> [1] TRUE
#> 
#> $plot$tier_style$labels
#> [1] TRUE
#> 
#> $plot$tier_style$fill
#> [1] "lightsteelblue"
#> 
#> $plot$tier_style$col
#> [1] "transparent"
#> 
#> $plot$tier_style$label_style
#> list()
#> 
#> $plot$tier_style$lwd
#> [1] 1
#> 
#> $plot$tier_style$alpha
#> [1] 1
#> 
#> $plot$tier_style$padding
#> [1] 4mm

# Query specific option
caugi_options("plot")
#> $plot
#> $plot$spacing
#> [1] 1lines
#> 
#> $plot$node_style
#> $plot$node_style$fill
#> [1] "lightgrey"
#> 
#> $plot$node_style$padding
#> [1] 2
#> 
#> $plot$node_style$size
#> [1] 1
#> 
#> 
#> $plot$edge_style
#> $plot$edge_style$arrow_size
#> [1] 3
#> 
#> $plot$edge_style$circle_size
#> [1] 1.5
#> 
#> $plot$edge_style$fill
#> [1] "black"
#> 
#> 
#> $plot$label_style
#> list()
#> 
#> $plot$title_style
#> $plot$title_style$col
#> [1] "black"
#> 
#> $plot$title_style$fontface
#> [1] "bold"
#> 
#> $plot$title_style$fontsize
#> [1] 14.4
#> 
#> 
#> $plot$tier_style
#> $plot$tier_style$boxes
#> [1] TRUE
#> 
#> $plot$tier_style$labels
#> [1] TRUE
#> 
#> $plot$tier_style$fill
#> [1] "lightsteelblue"
#> 
#> $plot$tier_style$col
#> [1] "transparent"
#> 
#> $plot$tier_style$label_style
#> list()
#> 
#> $plot$tier_style$lwd
#> [1] 1
#> 
#> $plot$tier_style$alpha
#> [1] 1
#> 
#> $plot$tier_style$padding
#> [1] 4mm

Advanced Usage

Manual Layouts

You can compute layouts separately and reuse them. First, compute the layout coordinates:

coords <- caugi_layout(dag, method = "sugiyama")

# The layout can be used for analysis or custom plotting
print(coords)
#>   name    x   y
#> 1   X1 0.25 0.0
#> 2   X2 0.75 0.0
#> 3   M1 0.00 0.5
#> 4   M2 0.50 0.5
#> 5   M3 1.00 0.5
#> 6    Y 0.50 1.0

# Plot uses the same layout, calling caugi_layout internally
plot(dag, layout = "sugiyama")

Integration with Grid Graphics

caugi plots are built on grid graphics, and provide access to the underlying grid grob object in the @grob slot of the plot output. This allows for further customization using grid functions.

# Create a plot
p <- plot(cg)

# The grob slot is a grid graphics object
class(p@grob)
#> [1] "gTree" "grob"  "gDesc"

# You can manipulate it with grid functions
library(grid)

# Draw the plot rotated by 30 degrees
pushViewport(viewport(angle = 30))
grid.draw(p@grob)
popViewport()

The composition operators work by manipulating these grid grobs, creating flexible and performant multi-plot layouts without requiring external packages.

References

Fruchterman, Thomas M. J., and Edward M. Reingold. 1991. “Graph Drawing by Force-Directed Placement.” Software: Practice and Experience 21 (11): 1129–64. https://doi.org/10.1002/spe.4380211102.
Kamada, Tomihisa, and Satoru Kawai. 1989. “An Algorithm for Drawing General Undirected Graphs.” Information Processing Letters 31 (1): 7–15. https://doi.org/10.1016/0020-0190(89)90102-6.
Sugiyama, Kozo, Shojiro Tagawa, and Mitsuhiko Toda. 1981. “Methods for Visual Understanding of Hierarchical System Structures.” IEEE Transactions on Systems, Man, and Cybernetics 11 (2): 109–25. https://doi.org/10.1109/TSMC.1981.4308636.